Geodesic Distance in Planar Graphs: An Integrable Approach
نویسنده
چکیده
We discuss the enumeration of planar graphs using bijections with suitably decorated trees, which allow for keeping track of the geodesic distances between faces of the graph. The corresponding generating functions obey non-linear recursion relations on the geodesic distance. These are solved by use of stationary multi-soliton tau-functions of suitable reductions of the KP hierarchy. We obtain a unified formulation of the (multi-) critical continuum limit describing large graphs with marked points at large geodesic distances, and obtain integrable differential equations for the corresponding scaling functions. This provides a continuum formulation of two-dimensional quantum gravity, in terms of the geodesic distance.
منابع مشابه
Statistics of planar graphs viewed from a vertex: A study via labeled trees
We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the informat...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کامل2 7 Ju n 20 05 Integrability of graph combinatorics via random walks and heaps of dimers
We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملAn Error-Tolerant Approximate Matching Algorithm for Attributed Planar Graphs and Its Application to Fingerprint Classification
Graph edit distance is a powerful error-tolerant similarity measure for graphs. For pattern recognition problems involving large graphs, however, the high computational complexity makes it sometimes impossible to apply edit distance algorithms. In the present paper we propose an efficient algorithm for edit distance computation of planar graphs. Given graphs embedded in the plane, we iterativel...
متن کامل